1,145 research outputs found

    Singularities and undefinitions in the calibration functions of sonic anemometers

    Get PDF
    A mathematical model of the process employed by a sonic anemometer to build up the measured wind vector in a steady flow is presented to illustrate the way the geometry of these sensors as well as the characteristics of aerodynamic disturbance on the acoustic path can lead to singularities in the transformation function that relates the measured (disturbed) wind vector with the real (corrected) wind vector, impeding the application of correction/calibration functions for some wind conditions. An implicit function theorem allows for the identification of those combinations of real wind conditions and design parameters that lead to undefined correction/ calibration functions. In general, orthogonal path sensors do not show problematic combination of parameters. However, some geometric sonic sensor designs, available in the market, with paths forming smaller angles could lead to undefined correction functions for some levels of aerodynamic disturbances and for certain wind directions. The parameters studied have a strong influence on the existence and number of singularities in the correction/ calibration function as well as on the number of singularities for some combination of parameters. Some conclusions concerning good design practices are included

    Sources of uncertainty in annual global horizontal irradiance data

    Get PDF
    The major sources of uncertainty in short-term assessment of global horizontal radiation (G) are the pyranometer type and their operation conditions for measurements, whereas the modeling approach and the geographic location are critical for estimations. The influence of all these factors in the uncertainty of the data has rarely been compared. Conversely, solar radiation data users are increasingly demanding more accurate uncertainty estimations. Here we compare the annual bias and uncertainty of all the mentioned factors using 732 weather stations located in Spain, two satellite-based products and three reanalyses. The largest uncertainties were associated to operational errors such as shading (bias = - 8.0%) or soiling (bias = - 9.4%), which occurred frequently in low-quality monitoring networks but are rarely detected because they pass conventional QC tests. Uncertainty in estimations greatly changed from reanalysis to satellite-based products, ranging from the gross accuracy of ERA-Interim (+ 6.1(-6.7)(+)(1)(8.)(8)%) to the high quality and spatial homogeneity of SARAH-1 (+ 1.4(-5.3)(+)(5.6)%). Finally, photodiodes from the Spanish agricultural network SIAR showed an uncertainty of (+6.)(9)(-5.4)%, which is far greater than that of secondary standards (+/- 1.5%) and similar to SARAH-1. This is probably caused by the presence of undetectable operational errors and the use of uncorrected photodiodes. Photodiode measurements from low-quality monitoring networks such as SIAR should be used with caution, because the chances of adding extra uncertainties due to poor maintenance or inadequate calibration considerably increase.Peer reviewe

    Growth of Human Pluripotent Stem Cells Using Functional Human Extracellular Matrix : Human Embryonic Stem Cell Protocols

    Get PDF
    The use of animal products in the derivation and maintenance of human pluripotent stem cells (hPSCs) limits their possible applications in research and in clinics. Thus, one of the major goals in regenerative medicine is the establishment of animal-free conditions to support the culture and differentiation of human stem cells. Human fibroblasts produce an extracellular matrix (ECM) which can be extracted without the use of detergents, sterilized, and then used to coat tissue culture plates. We have shown that human embryonic stem cells (hESCs) grown on this matrix maintain their pluripotency in the presence of medium conditioned by fibroblast cells, and that these cells maintain expression of surface proteins (SSEA4, Tra1-60, Tra1-81), alkaline phosphatase activity, and specific intracellular markers (Nanog, Oct-4, Tert, FoxD3) in hESCs. This growth system reduces exposure of hPSCs to feeder layers and animal ingredients, thereby limiting the risk of pathogenic contamination and additionally, facilitating their manipulation. Herein we present an improved version of our previous protocol for extracting ECM from human foreskin fibroblast using a different buffer. Our new hypotonic shock method is detergent-free, reduces costs, and preserves the integrity of the extracted ECM. This improved protocol has been validated for undifferentiated-state hPSC maintenance (more than 40 passages), stem cell differentiation, and for cell migration assays.Peer reviewe

    A Versatile Open-Source Printhead for Low-Cost 3D Microextrusion-Based Bioprinting

    Get PDF
    Three-dimensional (3D) bioprinting promises to be essential in tissue engineering for solving the rising demand for organs and tissues. Some bioprinters are commercially available, but their impact on the field of Tissue engineering (TE) is still limited due to their cost or difficulty to tune. Herein, we present a low-cost easy-to-build printhead for microextrusion-based bioprinting (MEBB) that can be installed in many desktop 3D printers to transform them into 3D bioprinters. We can extrude bioinks with precise control of print temperature between 2–60 °C. We validated the versatility of the printhead, by assembling it in three low-cost open-source desktop 3D printers. Multiple units of the printhead can also be easily put together in a single printer carriage for building a multi-material 3D bioprinter. Print resolution was evaluated by creating representative calibration models at different temperatures using natural hydrogels such as gelatin and alginate, and synthetic ones like poloxamer. Using one of the three modified low-cost 3D printers, we successfully printed cell-laden lattice constructs with cell viabilities higher than 90% after 24-h post printing. Controlling temperature and pressure according to the rheological properties of the bioinks was essential in achieving optimal printability and great cell viability. The cost per unit of our device, which can be used with syringes of different volume, is less expensive than any other commercially available product. These data demonstrate an affordable open-source printhead with the potential to become a reliable alternative to commercial bioprinters for any laboratory

    A Versatile Open-Source Printhead for Low-Cost 3D Microextrusion-Based Bioprinting

    Get PDF
    Three-dimensional (3D) bioprinting promises to be essential in tissue engineering for solving the rising demand for organs and tissues. Some bioprinters are commercially available, but their impact on the field of Tissue engineering (TE) is still limited due to their cost or difficulty to tune. Herein, we present a low-cost easy-to-build printhead for microextrusion-based bioprinting (MEBB) that can be installed in many desktop 3D printers to transform them into 3D bioprinters. We can extrude bioinks with precise control of print temperature between 2–60 °C. We validated the versatility of the printhead, by assembling it in three low-cost open-source desktop 3D printers. Multiple units of the printhead can also be easily put together in a single printer carriage for building a multi-material 3D bioprinter. Print resolution was evaluated by creating representative calibration models at different temperatures using natural hydrogels such as gelatin and alginate, and synthetic ones like poloxamer. Using one of the three modified low-cost 3D printers, we successfully printed cell-laden lattice constructs with cell viabilities higher than 90% after 24-h post printing. Controlling temperature and pressure according to the rheological properties of the bioinks was essential in achieving optimal printability and great cell viability. The cost per unit of our device, which can be used with syringes of different volume, is less expensive than any other commercially available product. These data demonstrate an affordable open-source printhead with the potential to become a reliable alternative to commercial bioprinters for any laboratory

    Analysis of Spanish Radiometric Networks with the Novel Bias-Based Quality Control (BQC) Method

    Get PDF
    Different types of measuring errors can increase the uncertainty of solar radiation measurements, but most common quality control (QC) methods do not detect frequent defects such as shading or calibration errors due to their low magnitude. We recently presented a new procedure, the Bias-based Quality Control (BQC), that detects low-magnitude defects by analyzing the stability of the deviations between several independent radiation databases and measurements. In this study, we extend the validation of the BQC by analyzing the quality of all publicly available Spanish radiometric networks measuring global horizontal irradiance (9 networks, 732 stations). Similarly to our previous validation, the BQC found many defects such as shading, soiling, or calibration issues not detected by classical QC methods. The results questioned the quality of SIAR, Euskalmet, MeteoGalica, and SOS Rioja, as all of them presented defects in more than 40% of their stations. Those studies based on these networks should be interpreted cautiously. In contrast, the number of defects was below a 5% in BSRN, AEMET, MeteoNavarra, Meteocat, and SIAR Rioja, though the presence of defects in networks such as AEMET highlights the importance of QC even when using a priori reliable stations.Peer reviewe

    Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data

    Get PDF
    This study examines the progress made by two new reanalyses in the estimation of surface irradiance: ERAS, the new global reanalysis from the ECMWF, and COSMO-REA6, the regional reanalysis from the DWD for Europe. Daily global horizontal irradiance data were evaluated with 41 BSRN stations worldwide, 294 stations in Europe, and two satellite-derived products (NSRDB and SARAH). ERAS achieves a moderate positive bias worldwide and in Europe of + 4.05 W/m 2 and + 4.54 W/m 2 respectively, which entails a reduction in the average bias ranging from 50% to 75% compared to ERA-Interim and MERRA-2. This makes ERAS comparable with satellite-derived products in terms of the mean bias in most inland stations, but ERAS results degrade in coastal areas and mountains. The bias of ERAS varies with the cloudiness, overestimating under cloudy conditions and slightly underestimating under clear-skies, which suggests a poor prediction of cloud patterns and leads to larger absolute errors than that of satellite-based products. In Europe, the regional COSMO-REA6 underestimates in most stations (MBE = -5.29 W/m(2)) showing the largest deviations under clear-sky conditions, which is most likely caused by the aerosol climatology used. Above 45 degrees N the magnitude of the bias and absolute error of COSMO-REA6 are similar to ERAS while it outperforms ERA5 in the coastal areas due to its high-resolution grid (6.2 km). We conclude that ERAS and COSMO-REA6 have reduced the gap between reanalysis and satellite-based data, but further development is required in the prediction of clouds while the spatial grid of ERAS (31 km) remains inadequate for places with high variability of surface irradiance (coasts and mountains). Satellite-based data should be still used when available, but having in mind their limitations, ERAS is a valid alternative for situations in which satellite-based data are missing (polar regions and gaps in times series) while COSMO-REA6 complements ERA5 in Central and Northern Europe mitigating the limitations of ERA5 in coastal areas.Peer reviewe

    Quantifying the amplified bias of PV system simulations due to uncertainties in solar radiation estimates

    Get PDF
    Solar radiation databases used for simulating PV systems are typically selected according to their annual bias in global horizontal irradiance (G(H)) because this bias propagates proportionally to plane-of-array irradiance (G(POA)) and module power (P-DC). However, the bias may get amplified through the simulations due to the impact of deviations in estimated irradiance on parts of the modeling chain depending on irradiance. This study quantifies these effects at 39 European locations by comparing simulations using satellite-based (SARAH) and reanalysis (COSMO-REA6 and ERAS) databases against simulations using station measurements. SARAH showed a stable bias through the simulations producing the best Pp c predictions in Central and South Europe, whereas the bias of reanalyses got substantially amplified because their deviations vary with atmospheric transmissivity due to an incorrect prediction of clouds. However, SARAH worsened at the northern locations covered by the product (55-65 degrees N) underestimating both G(POA) and P-DC. On the contrary, ERAS not only covers latitudes above 65 degrees but it also obtained the least biased P-DC estimations between 55 and 65 degrees N, which supports its use as a complement of satellite-based databases in high latitudes. The most significant amplifications occurred through the transposition model ranging from +/- 1% up to +/- 6%. Their magnitude increased linearly with the inclination angle, and they are related to the incorrect estimation of beam and diffuse irradiance. The bias increased around + 1% in the PV module model because the PV conversion efficiency depends on irradiance directly, and indirectly via module temperature. The amplification of the bias was similar and occasionally greater than the bias in annual G(H), so databases with the smallest bias in G(H) may not always provide the least biased PV simulations.Peer reviewe
    • …
    corecore